エンジニアを目指す浪人のブログ

情報系に役立ちそうな応用数理をゆるめにメモします

2018-01-01から1年間の記事一覧

確率変数のサブガウシアンの定義の意味について考える

本記事は以下の過去記事で得た結果を用います. いくつかの集中不等式(Hoeffding's Inequalityなど)を証明する - エンジニアを目指す浪人のブログ 勉強を進めていて,確率変数に対するサブガウシアン(sub-Gaussian)という性質を知りました.その定義の意味に…

マルコフ連鎖の定義をメモする

応用でよく使われる確率過程の1つにマルコフ連鎖(Markov chain)があります.その定義を目にするたびにいまいちモヤモヤしていましたが,わかりやすく感じた定義を文献[1]に見つけることができたので,その内容をメモすることにしました.若干記述を変更して…

EMアルゴリズムの基礎をまとめる

機械学習でよく用いられるEMアルゴリズム(expectation-maximization algorithm ; EM algorihm)を勉強していると,その目的あるいは用途として「観測変数と(観測できない)潜在変数がある確率モデルの尤度関数を最大化するパラメータを求める」と説明されてい…

イェンゼンの不等式の証明と等号成立条件について考える

勉強を進めていて,確率論の文脈におけるイェンゼンの不等式(Jensen's inequality)の証明が気になってモヤモヤしてしまいました.グラフをイメージすれば直感的には理解しやすいですが,きちんとした(?)数学的な証明を調べることにしました.また,応用で用…

特異値分解による行列の低ランク近似の基礎をまとめる

本記事は以下の過去記事で得た結果を用います.特異値分解の導出と,左特異ベクトル,特異値,右特異ベクトルとは何かについて考える - エンジニアを目指す浪人のブログ 行列分解の一手法である特異値分解(singular value decomposition ; SVD)を利用するこ…

線形写像が単射であるための必要十分条件は核(カーネル)が零ベクトルであることの証明をメモする

勉強を進めていて,線形写像の核(カーネル)と単射との関係について重要に感じたので,その証明を調べてメモすることにしました. 問題を設定するため,線形写像の定義は文献[2]を,核(カーネル)の定義は文献[3]を用います.単射の定義を示します.文献[4]に…