エンジニアを目指す浪人のブログ

情報系に役立ちそうな応用数理をゆるめにメモします

2017-02-01から1ヶ月間の記事一覧

一様収束する関数列はリーマン-スティルチェス積分と極限操作が交換可能であることを証明する

勉強を進めていて,関数列の積分と極限操作の交換がどのような場合に成り立つか,についてモヤモヤしてしまったので,リーマン-スティルチェス積分(あるいはリーマン積分)の場合にどうなるか調べることにしました. よく知られていることと思いますが,結論…

関数列の各点収束と一様収束(と数列の収束)の定義について考える

解析学分野を勉強していると,関数列の各点収束(pointwise convergence)や一様収束(uniform convergence)を目にすることがあります.そこでモヤモヤしてしまうことがあるので,定義を調べることにしました.ただ他にもよい解説がたくさんあるので,本記事で…

リーマン-スティルチェス積分の定義を調べる

本記事は以下の記事のDefinition 6.1(の一部)を用います. リーマン積分の定義を調べる - エンジニアを目指す浪人のブログ 解析学分野を勉強していると,リーマン-スティルチェス積分(Riemann-Stieltjes integral)を目にすることがあります.リーマン積分(Ri…

リーマン積分の定義を調べる

リーマン積分(Riemann integral)とはなにか?という問いに答えられるようにするため,リーマン積分の定義を調べることにしました. Rudin(1976)から引用します. 6.1 Definition Let be a given interval. By a partition of we mean a finite set of points…

連続関数の空間はLpノルムのリーマン積分版?について完備でないことを証明する

関数解析の勉強をしていて, 上の全ての実数値連続関数からなる(ベクトル)空間はノルム について完備ではないという事実を知りました(測度論における 空間は完備であるのに!).なのでその証明をメモしておくことにしました. 問題の設定のため,ここでは 上…

有界線形作用素の定義の有界についてすこし考える

関数解析の勉強をしていて,有界線形作用素(bounded linear operator)の定義のうち,有界とはどういう意味であるか,をさくっと理解できずにモヤモヤしてしまったので,その解釈をメモしておくことにしました.問題を設定するため,過去記事2.2-1 Definition…